Module projectif

Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : NM entre deux A-modules (à gauche) et pour tout morphisme g : PM, il existe un morphisme h : PN tel que g = fh, c'est-à-dire tel que le diagramme suivant commute :

Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.

Propriétés

  • Les A-modules projectifs sont les objets projectifs de la catégorie abélienne des A-modules : P est projectif si et seulement si le foncteur Hom(P, ) (covariant, exact à gauche) est exact.
  • Un module est projectif si et seulement s'il est facteur direct dans un module libre.
  • Par conséquent, tout module projectif est plat. La réciproque est fausse, mais tout module plat de présentation finie est projectif.
  • Sur un anneau de Dedekind A, tout module projectif de type fini est isomorphe à An I pour un idéal I de A.
  • Sur un anneau noethérien, un module de type fini est projectif si et seulement s'il est localement libre.
  • D'après le théorème de Quillen-Suslin, sur un anneau de polynômes A[X1,...,Xn] où A est un anneau principal (par exemple un corps commutatif), tout module projectif de type fini est libre[1],[2]. Cette propriété est également exacte si A est un anneau de Bézout commutatif ou un anneau de valuation et, dans le cas où A est un corps commutatif, lorsque l'anneau de polynômes ci-dessus est remplacé par l'anneau de polynômes de Laurent A[X1, …, Xn, Y1, …, Ym, Y1−1, …, Ym−1][3]. Voir également l'article Anneau d'Hermite.
  • Si A est un anneau commutatif noethérien sans idempotent non trivial (i.e. e2 = e implique que e = 0 ou 1), autrement dit, si son spectre est connexe pour la topologie de Zariski, tout module projectif non de type fini sur A est libre[4].
  • Sur un anneau local, tout module projectif est libre[5].

Rang

Pour tout module projectif de type fini P sur un anneau commutatif A, le rang du Ap-module libre Pp est appelé le rang de P en p, et P est dit de rang n si son rang en tout p vaut n[6].

Notes et références

Notes

  1. (en) Daniel Quillen, « Projective modules over polynomial rings », Invent. Math., vol. 36, no 1,‎ , p. 167-171 (DOI 10.1007/BF01390008)
  2. Daniel Ferrand, « Les modules projectifs de type fini sur un anneau de polynômes sur un corps sont libres », Séminaire Bourbaki, vol. 18, no 484,‎ , p. 202-221 (lire en ligne)
  3. (en) Tsit Yuen Lam, Serre's Problem on Projective Modules, Berlin, Springer, , 414 p. (ISBN 978-3-540-23317-6), p. 334 et Chap. V, Cor. 4.10
  4. (en) Hyman Bass, « Big projective modules are free », Illinois J. Math., vol. 7, no 1,‎ , p. 24-3, Corollary 4.5 (lire en ligne)
  5. (en) Irving Kaplansky, « Projective modules », Annals of Mathematics, vol. 68,‎ , p. 372-377
  6. (en) N. Bourbaki, Commutative Algebra : Chapters 1-7, Springer, , 625 p. (ISBN 978-3-540-64239-8, lire en ligne), p. 111-112, chap. II, § 5.3

Référence

  • N. Bourbaki, Algèbre : Chapitres 1 à 3, Springer, , 636 p. (ISBN 978-3-540-33849-9, lire en ligne), chap. II, § 2.2

Articles connexes

  • icône décorative Portail de l’algèbre