Número de Elsasser

El número de Elsasser, Λ, es un número adimensional en magnetohidrodinámica que representa la relación entre las fuerzas magnéticas y la fuerza de Coriolis.[1]

Simbología

Simbología
Símbolo Nombre Unidad
Λ i {\displaystyle \Lambda _{i}} Número de Elsasser impuesto
Λ d {\displaystyle \Lambda _{d}} Número de Elsasser dinámico
E k {\displaystyle \mathrm {Ek} } Número de Ekman
P m {\displaystyle \mathrm {P_{m}} } Número de Prandtl magnético
R m {\displaystyle \mathrm {R_{m}} } Número de Reynolds magnético
Dimensiones
{\displaystyle \ell } m
L {\displaystyle L} Longitud m
d {\displaystyle d} Dimensión de sección transversal m
t {\displaystyle t} Tiempo s
Magnético
B {\displaystyle B} Densidad de flujo magnético T
H {\displaystyle H} Fuerza de campo magnético A / m
ρ m {\displaystyle \rho _{m}} Densidad de energía magnética J / m3
q {\displaystyle q} Carga C
η {\displaystyle \eta } Difusividad magnética m2 / s
μ 0 {\displaystyle \mu _{0}} Permeabilidad en el vacío H / m
θ {\displaystyle \theta } Ángulo entre velocidad ( u {\displaystyle u} ) y campo magnético ( B {\displaystyle B} )
Materia
m {\displaystyle m} Masa kg
m ˙ {\displaystyle {\dot {m}}} Flujo másico kg / s
u {\displaystyle u} Velocidad m / s
ρ {\displaystyle \rho } Densidad kg / m3
ν {\displaystyle \nu } Viscosidad cinemática m2 / s
Planeta
ϕ {\displaystyle \phi } Latitud
Ω {\displaystyle \Omega } Velocidad de rotación del cuerpo m / s

Descripción

Se define como:

Λ = Fuerza magnética Fuerza de Coriolis {\displaystyle \Lambda ={\frac {\text{Fuerza magnética}}{\text{Fuerza de Coriolis}}}}

Λ i = q   u   B sin θ m ˙   L   ( 2 Ω sin ϕ ) {\displaystyle \Lambda _{i}={\frac {q\ u\ B\sin \theta }{{\dot {m}}\ L\ (2\Omega \sin \phi )}}}

Número de Elsasser Impuesto (Bajo R m {\displaystyle \mathrm {R_{m}} } )

Deducción
1 2 3 4 5 6
Ecuaciones Λ i = q   u   B m ˙   L   ( 2 Ω ) {\displaystyle \Lambda _{i}={\frac {q\ u\ B}{{\dot {m}}\ L\ (2\Omega )}}} m ˙ = m t {\displaystyle {\dot {m}}={\frac {m}{t}}} u = L t {\displaystyle u={\frac {L}{t}}} ρ = m d 2 L {\displaystyle \rho ={\frac {m}{d^{2}L}}} η = d 2 t {\displaystyle \eta ={\frac {d^{2}}{t}}} μ 0 = B ( L   t q ) {\displaystyle \mu _{0}=B{\Bigl (}{\frac {L\ t}{q}}{\Bigr )}}
Sustituyendo Λ i = q   ( L / t )   B ( m / t )   L   ( 2 Ω ) {\displaystyle \Lambda _{i}={\frac {q\ (L/t)\ B}{(m/t)\ L\ (2\Omega )}}}
Multiplicando ( B   d 2 B   d 2 ) {\displaystyle {\Bigl (}{\frac {B\ d^{2}}{B\ d^{2}}}{\Bigr )}} Λ i = q   ( L / t )   B ( m / t )   L   ( 2 Ω ) ( B   d 2 B   d 2 ) {\displaystyle \Lambda _{i}={\frac {q\ (L/t)\ B}{(m/t)\ L\ (2\Omega )}}{\Bigl (}{\frac {B\ d^{2}}{B\ d^{2}}}{\Bigr )}}
Ordenando Λ i = B 2 2   [ m / ( d 2 L ) ]   [ d 2 / t ]   [ B   ( L   t / q ) ]   Ω {\displaystyle \Lambda _{i}={\frac {B^{2}}{2\ [m/(d^{2}L)]\ [d^{2}/t]\ [B\ (L\ t/q)]\ \Omega }}}
Sustituyendo Λ i = B 2 2   ρ   η   μ 0   Ω {\displaystyle \Lambda _{i}={\frac {B^{2}}{2\ \rho \ \eta \ \mu _{0}\ \Omega }}}

Λ i = B 2 2   ρ   η   μ 0   Ω {\displaystyle \Lambda _{i}={\frac {B^{2}}{2\ \rho \ \eta \ \mu _{0}\ \Omega }}}

Deducción
1 2 3 4
Ecuaciones Λ i = B 2 2   ρ   η   μ 0   Ω {\displaystyle \Lambda _{i}={\frac {B^{2}}{2\ \rho \ \eta \ \mu _{0}\ \Omega }}} ρ m = B 2 μ 0 {\displaystyle \rho _{m}={\frac {B^{2}}{\mu _{0}}}} P m = ν η {\displaystyle \mathrm {P_{m}} ={\frac {\nu }{\eta }}} E k = ν L 2   ( 2 Ω ) {\displaystyle \mathrm {Ek} ={\frac {\nu }{L^{2}\ (2\Omega )}}}
Multiplicando ( ν 2 L 2 ν 2 L 2 ) {\displaystyle {\Bigl (}{\frac {\nu ^{2}L^{2}}{\nu ^{2}L^{2}}}{\Bigr )}} Λ i = B 2 2   ρ   η   μ 0   Ω ( ν 2 L 2 ν 2 L 2 ) {\displaystyle \Lambda _{i}={\frac {B^{2}}{2\ \rho \ \eta \ \mu _{0}\ \Omega }}{\Bigl (}{\frac {\nu ^{2}L^{2}}{\nu ^{2}L^{2}}}{\Bigr )}}
Ordenando Λ i = ( L 2 ν 2   ρ ) ( B 2 μ 0 ) ( ν η ) ( ν L 2 ( 2   Ω ) ) {\displaystyle \Lambda _{i}={\Bigl (}{\frac {L^{2}}{\nu ^{2}\ \rho }}{\Bigr )}{\Bigl (}{\frac {B^{2}}{\mu _{0}}}{\Bigr )}{\Bigl (}{\frac {\nu }{\eta }}{\Bigr )}{\Bigl (}{\frac {\nu }{L^{2}(2\ \Omega )}}{\Bigr )}}
Sustituyendo Λ i = ( L 2 ν 2   ρ ) ρ m   P m   E k {\displaystyle \Lambda _{i}={\Bigl (}{\frac {L^{2}}{\nu ^{2}\ \rho }}{\Bigr )}\rho _{m}\ \mathrm {P_{m}} \ \mathrm {Ek} }
Simplificando Λ i = ( L ν ) 2 ( ρ m ρ ) P m   E k {\displaystyle \Lambda _{i}={\Bigl (}{\frac {L}{\nu }}{\Bigr )}^{2}{\Bigl (}{\frac {\rho _{m}}{\rho }}{\Bigr )}\mathrm {P_{m}} \ \mathrm {Ek} }

Λ i = ( L ν ) 2 ( ρ m ρ ) P m   E k {\displaystyle \Lambda _{i}={\Bigl (}{\frac {L}{\nu }}{\Bigr )}^{2}{\Bigl (}{\frac {\rho _{m}}{\rho }}{\Bigr )}\mathrm {P_{m}} \ \mathrm {Ek} }

Número de Elsasser dinámico (Alto R m {\displaystyle \mathrm {R_{m}} } )

Deducción
1 2 3 4
Ecuaciones Λ d = B 2 2   ρ   η   μ 0   Ω {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ \eta \ \mu _{0}\ \Omega }}} η = d 2 t {\displaystyle \eta ={\frac {d^{2}}{t}}} u = L t {\displaystyle u={\frac {L}{t}}} = d 2 L {\displaystyle \ell ={\frac {d^{2}}{L}}}
Sustituyendo Λ d = B 2 2   ρ   ( d 2 / t )   μ 0   Ω {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ (d^{2}/t)\ \mu _{0}\ \Omega }}}
Multiplicando ( L L ) {\displaystyle {\Bigl (}{\frac {L}{L}}{\Bigr )}} Λ d = B 2 2   ρ   ( d 2 / t )   μ 0   Ω ( L L ) {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ (d^{2}/t)\ \mu _{0}\ \Omega }}{\Bigl (}{\frac {L}{L}}{\Bigr )}}
Ordenando Λ d = B 2 2   ρ   μ 0   ( L / t )   ( d 2 / L )   Ω {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ \mu _{0}\ (L/t)\ (d^{2}/L)\ \Omega }}}
Sustituyendo Λ d = B 2 2   ρ   μ 0   u     Ω {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ \mu _{0}\ u\ \ell \ \Omega }}}

Λ d = B 2 2   ρ   μ 0   u     Ω {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ \mu _{0}\ u\ \ell \ \Omega }}}

Deducción
1 2 3
Ecuaciones Λ d = B 2 2   ρ   μ 0   u     Ω {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ \mu _{0}\ u\ \ell \ \Omega }}} Λ i = B 2 2   ρ   η   μ 0   Ω {\displaystyle \Lambda _{i}={\frac {B^{2}}{2\ \rho \ \eta \ \mu _{0}\ \Omega }}} R m = u   d η {\displaystyle \mathrm {R_{m}} ={\frac {u\ d}{\eta }}}
Multiplicando ( η   d η   d ) {\displaystyle {\Bigl (}{\frac {\eta \ d}{\eta \ d}}{\Bigr )}} Λ d = B 2 2   ρ   μ 0   u     Ω ( η   d η   d ) {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ \mu _{0}\ u\ \ell \ \Omega }}{\Bigl (}{\frac {\eta \ d}{\eta \ d}}{\Bigr )}}
Ordenando Λ d = B 2 2   ρ   ( η )   μ 0   Ω ( d [ ( u   d ) / η ]   ) {\displaystyle \Lambda _{d}={\frac {B^{2}}{2\ \rho \ (\eta )\ \mu _{0}\ \Omega }}{\Bigl (}{\frac {d}{[(u\ d)/\eta ]\ \ell }}{\Bigr )}}
Sustituyendo Λ d = Λ i ( d R m   ) {\displaystyle \Lambda _{d}=\Lambda _{i}{\Bigl (}{\frac {d}{\mathrm {R_{m}} \ \ell }}{\Bigr )}}

Λ d = Λ i ( d R m   ) {\displaystyle \Lambda _{d}=\Lambda _{i}{\Bigl (}{\frac {d}{\mathrm {R_{m}} \ \ell }}{\Bigr )}}

Referencias

  1. Encyclopedia of geomagnetism and paleomagnetism, p. 299

Bibliografía

  • Gubbins, David, and Emilio Herrero-Bervera, eds. Encyclopedia of geomagnetism and paleomagnetism. Springer Science & Business Media, 2007.
Control de autoridades
  • Proyectos Wikimedia
  • Wd Datos: Q3343001
  • Wd Datos: Q3343001