PRKCQ

Protein-coding gene in the species Homo sapiens
PRKCQ
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1XJD, 2ENJ, 2ENN, 2ENZ, 2JED, 4Q9Z, 4RA5, 5F9E

Identifiers
AliasesPRKCQ, PRKCT, nPKC-theta, protein kinase C theta
External IDsOMIM: 600448; MGI: 97601; HomoloGene: 21263; GeneCards: PRKCQ; OMA:PRKCQ - orthologs
Gene location (Human)
Chromosome 10 (human)
Chr.Chromosome 10 (human)[1]
Chromosome 10 (human)
Genomic location for PRKCQ
Genomic location for PRKCQ
Band10p15.1Start6,427,143 bp[1]
End6,580,301 bp[1]
Gene location (Mouse)
Chromosome 2 (mouse)
Chr.Chromosome 2 (mouse)[2]
Chromosome 2 (mouse)
Genomic location for PRKCQ
Genomic location for PRKCQ
Band2 A1|2 8.42 cMStart11,176,919 bp[2]
End11,306,033 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • triceps brachii muscle

  • glutes

  • biceps brachii

  • vastus lateralis muscle

  • Skeletal muscle tissue of biceps brachii

  • Skeletal muscle tissue of rectus abdominis

  • thoracic diaphragm

  • deltoid muscle

  • muscle of thigh

  • tibialis anterior muscle
Top expressed in
  • habenula

  • ankle

  • temporal muscle

  • retinal pigment epithelium

  • sternocleidomastoid muscle

  • digastric muscle

  • seminiferous tubule

  • triceps brachii muscle

  • thymus

  • quadriceps femoris muscle
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
  • transferase activity
  • nucleotide binding
  • protein kinase C activity
  • metal ion binding
  • kinase activity
  • protein binding
  • ATP binding
  • protein serine/threonine kinase activity
  • protein kinase activity
Cellular component
  • cytoplasm
  • cytosol
  • membrane
  • plasma membrane
  • intracellular anatomical structure
  • immunological synapse
  • microtubule organizing center
  • aggresome
Biological process
  • intracellular signal transduction
  • regulation of transcription, DNA-templated
  • positive regulation of telomere capping
  • phosphorylation
  • immune system process
  • positive regulation of telomere maintenance via telomerase
  • positive regulation of T-helper 2 cell activation
  • positive regulation of interleukin-4 production
  • axon guidance
  • platelet activation
  • Fc-epsilon receptor signaling pathway
  • protein phosphorylation
  • negative regulation of T cell apoptotic process
  • negative regulation of insulin receptor signaling pathway
  • positive regulation of T cell activation
  • membrane protein ectodomain proteolysis
  • positive regulation of NF-kappaB transcription factor activity
  • peptidyl-serine phosphorylation
  • positive regulation of T-helper 17 type immune response
  • regulation of cell growth
  • positive regulation of T cell proliferation
  • positive regulation of telomerase activity
  • cell chemotaxis
  • positive regulation of interleukin-17 production
  • inflammatory response
  • T cell receptor signaling pathway
  • regulation of platelet aggregation
  • regulation of megakaryocyte differentiation
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

5588

18761

Ensembl

ENSG00000065675

ENSMUSG00000026778

UniProt

Q04759

Q02111

RefSeq (mRNA)
NM_001242413
NM_001282644
NM_001282645
NM_006257
NM_001323265

NM_001323266
NM_001323267

NM_008859
NM_178075

RefSeq (protein)
NP_001229342
NP_001269573
NP_001269574
NP_001310194
NP_001310195

NP_001310196
NP_006248

NP_032885

Location (UCSC)Chr 10: 6.43 – 6.58 MbChr 2: 11.18 – 11.31 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Protein kinase C theta (PKC-θ) is an enzyme that in humans is encoded by the PRKCQ gene.[5] PKC-θ, a member of serine/threonine kinases, is mainly expressed in hematopoietic cells[5] with high levels in platelets and T lymphocytes, where plays a role in signal transduction. Different subpopulations of T cells vary in their requirements of PKC-θ, therefore PKC-θ is considered as a potential target for inhibitors in the context of immunotherapy.[6]

Function

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role. The protein encoded by this gene is one of the PKC family members. It is a calcium-independent and phospholipid-dependent protein kinase. This kinase is important for T-cell activation. It is required for the activation of the transcription factors NF-kappaB and AP-1, and may link the T cell receptor (TCR) signaling complex to the activation of the transcription factors.[7] PKC-θ also play a role in the apoptosis of lymphoid cells where it negatively influence and delay the aggregation of spectrin in an early phase of apoptosis.[8]

The role of PKC-θ in T cells

PKC-θ has a role in the transduction of signals in T cells, the kinase influences their activation, survival and growth. PKC-θ is important in the signal pathway integrating signals from TCR and CD28 receptors. A junction between an APC (an antigen presenting cell) and a T cell through their TCR and MHC receptors forms an immunological synapse. The active PKC-θ is localized in immunological synapse of T cells between the cSMAC (central supramolecular activation cluster containing TCR) and pSMAC (peripheral supramolecular activation cluster containing LFA-1 and ICAM-1). In regulatory T cells, PKC-θ is depleted from the region of immunological synapse, whereas in effector T cells, PKC-θ is present.[6] As a result of co-stimulation by CD28 and TCR, PKC-θ is sumoylated by SUMO1 predominantly on the sites Lys325 and Lys506. Sumoylation is important because of forming of the immunological synapse.[9] Subsequently, PKC-θ phosphorylates SPAK (STE20/SPS1-related, proline alanine-rich kinase) that activates the transcription factor AP-1 (activating protein-1). PKC-θ also initiates the assembly of proteins Carma-1, Bcl-10 and Malt-1 by phosphorylation of Carma-1. This complex of three proteins activates the transcription factor NF-κB (nuclear factor-κB). Furthermore, PKC-θ plays a role in the activation of transcription factor NF-AT (nuclear factor of activated T cells).[10] Thus, PKC-θ promotes inflammation in effector T cells.[6] PKC-θ plays a role in the activation of ILC2 and contribute to the proliferation of Th2 cells.[11] The kinase PKC-θ is crucial for function of Th2 and Th17.[6] Moreover, PKC-θ can translocate itself to the nucleus and by phosphorylation of histones increases the accessibility of transcriptional-memory-responsive genes in memory T cells.[12] PKC-θ plays a role in anti-tumor activity of NK cells. It was observed that in mice without PKC-θ, MHCI-deficient tumors are more often.[13]

The possible application of its inhibitors

Properties of PKC-θ make PKC-θ a good target for therapy in order to reduce harmful inflammation mediated by Th17 (mediating autoimmune diseases) or by Th2 (causing allergies)[11] without diminishing the ability of T cells to get rid of viral-infected cells. Inhibitors could be used in T-cell mediated adaptive immune responses. Inhibition of PKC-θ downregulates transcription factors (NF-κB, NF-AT) and cause lower production of IL-2. It was observed that animals without PKC-θ are resistant to some autoimmune diseases.[6] PKC-θ could be a target of inhibitors in the therapy of allergies.

The problem is that inhibitors of PKC-θ targeting catalytic sites may have toxic effects because of low specificity (catalytic sites among PKCs are very similar). Allosteric inhibitors have to be more specific to concrete isoforms of PKC.[6] s.

Interactions

PRKCQ has been shown to interact with:

PRKCQ has been shown to phosphorylate CARD11 as part of the NF-κB signaling pathway.[18]

Inhibitors

  • (R)-2-((S)-4-(3-Chloro-5-fluoro-6-(1H-pyrazolo[3,4-b]pyridin- 3-yl)pyridin-2-yl)piperazin-2-yl)-3-methylbutan-2-ol[19]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000065675 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026778 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Baier G, Telford D, Giampa L, Coggeshall KM, Baier-Bitterlich G, Isakov N, Altman A (April 1993). "Molecular cloning and characterization of PKC theta, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells". J Biol Chem. 268 (7): 4997–5004. doi:10.1016/S0021-9258(18)53494-3. PMID 8444877.
  6. ^ a b c d e f Zanin-Zhorov A, Dustin ML, Blazar BR (2011). "PKC-θ function at the immunological synapse: prospects for therapeutic targeting". Trends in Immunology. 32 (8): 358–363. doi:10.1016/j.it.2011.04.007. PMC 3573858. PMID 21733754.
  7. ^ "Entrez Gene: PRKCQ protein kinase C, theta".
  8. ^ Michalczyk I, Toporkiewicz M, Dubielecka PM, Chorzalska A, Sikorski AF (2016). "PKC-θ is a negative regulator of TRAIL-induced and FADD-mediated apoptotic spectrin aggregation". Folia Histochemica et Cytobiologica. 54 (1): 1–13. doi:10.5603/FHC.a2016.0006. PMID 27094638.
  9. ^ Wang XD, Gong Y, Chen ZL, Gong BN, Xie JJ, Zhong CQ, Wang QL, Diao LH, Xu A (2015). "TCR-induced sumoylation of the kinase PKC-θ controls T cell synapse organization and T cell activation". Nature Immunology. 16 (11): 1195–1203. doi:10.1038/ni.3259. ISSN 1529-2916. PMID 26390157. S2CID 21498259.
  10. ^ Zeng Q, Luo P, Gu J, Liang B, Liu Q, Zhang A (2017). "PKC θ-mediated Ca 2+ /NF-AT signalling pathway may be involved in T-cell immunosuppression in coal-burning arsenic-poisoned population". Environmental Toxicology and Pharmacology. 55: 44–50. doi:10.1016/j.etap.2017.08.005. PMID 28823652.
  11. ^ a b Madouri F, Chenuet P, Beuraud C, Fauconnier L, Marchiol T, Rouxel N, Ledru A, Gallerand M, Lombardi V (2017). "Protein kinase Cθ controls type 2 innate lymphoid cell and T H 2 responses to house dust mite allergen". Journal of Allergy and Clinical Immunology. 139 (5): 1650–1666. doi:10.1016/j.jaci.2016.08.044. PMID 27746240.
  12. ^ Li J, Hardy K, Phetsouphanh C, Tu WJ, Sutcliffe EL, McCuaig R, Sutton CR, Zafar A, Munier CM (2016-06-15). "Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation". J Cell Sci. 129 (12): 2448–2461. doi:10.1242/jcs.181248. ISSN 0021-9533. PMC 4920249. PMID 27149922.
  13. ^ Anel A, Aguiló JI, Catalán E, Garaude J, Rathore MG, Pardo J, Villalba M (2012). "Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity". Frontiers in Immunology. 3: 187. doi:10.3389/fimmu.2012.00187. ISSN 1664-3224. PMC 3389606. PMID 22783260.
  14. ^ Bauer B, Krumböck N, Fresser F, Hochholdinger F, Spitaler M, Simm A, Uberall F, Schraven B, Baier G (August 2001). "Complex formation and cooperation of protein kinase C theta and Akt1/protein kinase B alpha in the NF-kappa B transactivation cascade in Jurkat T cells". J. Biol. Chem. 276 (34): 31627–34. doi:10.1074/jbc.M103098200. PMID 11410591.
  15. ^ Ron D, Napolitano EW, Voronova A, Vasquez NJ, Roberts DN, Calio BL, Caothien RH, Pettiford SM, Wellik S, Mandac JB, Kauvar LM (July 1999). "Direct interaction in T-cells between thetaPKC and the tyrosine kinase p59fyn". J. Biol. Chem. 274 (27): 19003–10. doi:10.1074/jbc.274.27.19003. PMID 10383400.
  16. ^ Witte S, Villalba M, Bi K, Liu Y, Isakov N, Altman A (January 2000). "Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain". J. Biol. Chem. 275 (3): 1902–9. doi:10.1074/jbc.275.3.1902. PMID 10636891.
  17. ^ Hehner SP, Li-Weber M, Giaisi M, Dröge W, Krammer PH, Schmitz ML (April 2000). "Vav synergizes with protein kinase C theta to mediate IL-4 gene expression in response to CD28 costimulation in T cells". J. Immunol. 164 (7): 3829–36. doi:10.4049/jimmunol.164.7.3829. PMID 10725744.
  18. ^ Takeda K, Harada Y, Watanabe R, Inutake Y, Ogawa S, Onuki K, Kagaya S, Tanabe K, Kishimoto H, Abe R (December 2008). "CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/Gads axis". Int. Immunol. 20 (12): 1507–15. doi:10.1093/intimm/dxn108. PMID 18829987.
  19. ^ Jimenez JM, Boyall D, Brenchley G, Collier PN, Davis CJ, Fraysse D, Keily SB, Henderson J, Miller A, Pierard F, Settimo L, Twin HC, Bolton CM, Curnock AP, Chiu P, Tanner AJ, Young S (2013). "Design and optimization of selective protein kinase C θ (PKCθ) inhibitors for the treatment of autoimmune diseases". J. Med. Chem. 56 (5): 1799–810. doi:10.1021/jm301465a. PMID 23398373.

Further reading

  • Meller N, Altman A, Isakov N (1998). "New perspectives on PKCtheta, a member of the novel subfamily of protein kinase C." Stem Cells. 16 (3): 178–92. doi:10.1002/stem.160178. PMID 9617893. S2CID 83896240.
  • Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M (2004). "HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication". J. Biosci. 28 (3): 323–35. doi:10.1007/BF02970151. PMID 12734410. S2CID 33749514.
  • Ruegg CL, Strand M (1991). "A synthetic peptide with sequence identity to the transmembrane protein GP41 of HIV-1 inhibits distinct lymphocyte activation pathways dependent on protein kinase C and intracellular calcium influx". Cell. Immunol. 137 (1): 1–13. doi:10.1016/0008-8749(91)90051-C. PMID 1832084.
  • Chowdhury IH, Koyanagi Y, Kobayashi S, Hamamoto Y, Yoshiyama H, Yoshida T, Yamamoto N (1990). "The phorbol ester TPA strongly inhibits HIV-1-induced syncytia formation but enhances virus production: possible involvement of protein kinase C pathway". Virology. 176 (1): 126–32. doi:10.1016/0042-6822(90)90237-L. PMID 1970444.
  • Ruegg CL, Strand M (1990). "Inhibition of protein kinase C and anti-CD3-induced Ca2+ influx in Jurkat T cells by a synthetic peptide with sequence identity to HIV-1 gp41". J. Immunol. 144 (10): 3928–35. doi:10.4049/jimmunol.144.10.3928. PMID 2139676.
  • Jakobovits A, Rosenthal A, Capon DJ (1990). "Trans-activation of HIV-1 LTR-directed gene expression by tat requires protein kinase C." EMBO J. 9 (4): 1165–70. doi:10.1002/j.1460-2075.1990.tb08223.x. PMC 551792. PMID 2182321.
  • Fields AP, Bednarik DP, Hess A, May WS (1988). "Human immunodeficiency virus induces phosphorylation of its cell surface receptor". Nature. 333 (6170): 278–80. Bibcode:1988Natur.333..278F. doi:10.1038/333278a0. PMID 3259291. S2CID 4254146.
  • Chirmule N, Goonewardena H, Pahwa S, Pasieka R, Kalyanaraman VS, Pahwa S (1995). "HIV-1 envelope glycoproteins induce activation of activated protein-1 in CD4+ T cells". J. Biol. Chem. 270 (33): 19364–9. doi:10.1074/jbc.270.33.19364. PMID 7642615.
  • Chang JD, Xu Y, Raychowdhury MK, Ware JA (1993). "Molecular cloning and expression of a cDNA encoding a novel isoenzyme of protein kinase C (nPKC). A new member of the nPKC family expressed in skeletal muscle, megakaryoblastic cells, and platelets". J. Biol. Chem. 268 (19): 14208–14. doi:10.1016/S0021-9258(19)85228-6. PMID 7686153.
  • Erdel M, Baier-Bitterlich G, Duba C, Isakov N, Altman A, Utermann G, Baier G (1995). "Mapping of the human protein kinase C-theta (PRKCQ) gene locus to the short arm of chromosome 10 (10p15) by FISH". Genomics. 25 (2): 595–7. doi:10.1016/0888-7543(95)80068-W. PMID 7790001.
  • Ward NE, Gravitt KR, O'Brian CA (1995). "Inhibition of protein kinase C by a synthetic peptide corresponding to cytoplasmic domain residues 828-848 of the human immunodeficiency virus type 1 envelope glycoprotein". Cancer Lett. 88 (1): 37–40. doi:10.1016/0304-3835(94)03610-U. PMID 7850771.
  • Gupta S, Aggarwal S, Kim C, Gollapudi S (1994). "Human immunodeficiency virus-1 recombinant gp120 induces changes in protein kinase C isozymes--a preliminary report". Int. J. Immunopharmacol. 16 (3): 197–204. doi:10.1016/0192-0561(94)90013-2. PMID 8206685.
  • Parada NA, Cruikshank WW, Danis HL, Ryan TC, Center DM (1996). "IL-16- and other CD4 ligand-induced migration is dependent upon protein kinase C." Cell. Immunol. 168 (1): 100–6. doi:10.1006/cimm.1996.0054. PMID 8599832.
  • Conant K, Ma M, Nath A, Major EO (1996). "Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes". J. Virol. 70 (3): 1384–9. doi:10.1128/JVI.70.3.1384-1389.1996. PMC 189957. PMID 8627654.
  • Smith BL, Krushelnycky BW, Mochly-Rosen D, Berg P (1996). "The HIV nef protein associates with protein kinase C theta". J. Biol. Chem. 271 (28): 16753–7. doi:10.1074/jbc.271.17.9906. PMID 8663223.
  • Meller N, Liu YC, Collins TL, Bonnefoy-Bérard N, Baier G, Isakov N, Altman A (1996). "Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function". Mol. Cell. Biol. 16 (10): 5782–91. doi:10.1128/MCB.16.10.5782. PMC 231579. PMID 8816492.
  • Holmes AM (1996). "In vitro phosphorylation of human immunodeficiency virus type 1 Tat protein by protein kinase C: evidence for the phosphorylation of amino acid residue serine-46". Arch. Biochem. Biophys. 335 (1): 8–12. doi:10.1006/abbi.1996.0476. PMID 8914829.
  • Monks CR, Kupfer H, Tamir I, Barlow A, Kupfer A (1997). "Selective modulation of protein kinase C-theta during T-cell activation". Nature. 385 (6611): 83–6. Bibcode:1997Natur.385...83M. doi:10.1038/385083a0. PMID 8985252. S2CID 4255930.
  • Datta R, Kojima H, Yoshida K, Kufe D (1997). "Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis". J. Biol. Chem. 272 (33): 20317–20. doi:10.1074/jbc.272.33.20317. PMID 9252332.
  • v
  • t
  • e
  • 1xjd: Crystal Structure of PKC-theta complexed with Staurosporine at 2A resolution
    1xjd: Crystal Structure of PKC-theta complexed with Staurosporine at 2A resolution
  • v
  • t
  • e
Non-specific serine/threonine protein kinases (EC 2.7.11.1)
Pyruvate dehydrogenase kinase (EC 2.7.11.2)
Dephospho-(reductase kinase) kinase (EC 2.7.11.3)
3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring) kinase (EC 2.7.11.4)
(isocitrate dehydrogenase (NADP+)) kinase (EC 2.7.11.5)
(tyrosine 3-monooxygenase) kinase (EC 2.7.11.6)
Myosin-heavy-chain kinase (EC 2.7.11.7)
Fas-activated serine/threonine kinase (EC 2.7.11.8)
Goodpasture-antigen-binding protein kinase (EC 2.7.11.9)
  • -
IκB kinase (EC 2.7.11.10)
cAMP-dependent protein kinase (EC 2.7.11.11)
cGMP-dependent protein kinase (EC 2.7.11.12)
Protein kinase C (EC 2.7.11.13)
Rhodopsin kinase (EC 2.7.11.14)
Beta adrenergic receptor kinase (EC 2.7.11.15)
G-protein coupled receptor kinases (EC 2.7.11.16)
Ca2+/calmodulin-dependent (EC 2.7.11.17)
Myosin light-chain kinase (EC 2.7.11.18)
Phosphorylase kinase (EC 2.7.11.19)
Elongation factor 2 kinase (EC 2.7.11.20)
Polo kinase (EC 2.7.11.21)
Serine/threonine-specific protein kinases (EC 2.7.11.21-EC 2.7.11.30)
Polo kinase (EC 2.7.11.21)
Cyclin-dependent kinase (EC 2.7.11.22)
(RNA-polymerase)-subunit kinase (EC 2.7.11.23)
Mitogen-activated protein kinase (EC 2.7.11.24)
MAP3K (EC 2.7.11.25)
Tau-protein kinase (EC 2.7.11.26)
(acetyl-CoA carboxylase) kinase (EC 2.7.11.27)
  • -
Tropomyosin kinase (EC 2.7.11.28)
  • -
Low-density-lipoprotein receptor kinase (EC 2.7.11.29)
  • -
Receptor protein serine/threonine kinase (EC 2.7.11.30)
MAP2K
Portal:
  • icon Biology