Interior product

Mapping from p forms to p-1 forms

In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product ι X ω {\displaystyle \iota _{X}\omega } is sometimes written as X ω . {\displaystyle X\mathbin {\lrcorner } \omega .} [1]

Definition

The interior product is defined to be the contraction of a differential form with a vector field. Thus if X {\displaystyle X} is a vector field on the manifold M , {\displaystyle M,} then

ι X : Ω p ( M ) Ω p 1 ( M ) {\displaystyle \iota _{X}:\Omega ^{p}(M)\to \Omega ^{p-1}(M)}
is the map which sends a p {\displaystyle p} -form ω {\displaystyle \omega } to the ( p 1 ) {\displaystyle (p-1)} -form ι X ω {\displaystyle \iota _{X}\omega } defined by the property that
( ι X ω ) ( X 1 , , X p 1 ) = ω ( X , X 1 , , X p 1 ) {\displaystyle (\iota _{X}\omega )\left(X_{1},\ldots ,X_{p-1}\right)=\omega \left(X,X_{1},\ldots ,X_{p-1}\right)}
for any vector fields X 1 , , X p 1 . {\displaystyle X_{1},\ldots ,X_{p-1}.}

The interior product is the unique antiderivation of degree −1 on the exterior algebra such that on one-forms α {\displaystyle \alpha }

ι X α = α ( X ) = α , X , {\displaystyle \displaystyle \iota _{X}\alpha =\alpha (X)=\langle \alpha ,X\rangle ,}
where , {\displaystyle \langle \,\cdot ,\cdot \,\rangle } is the duality pairing between α {\displaystyle \alpha } and the vector X . {\displaystyle X.} Explicitly, if β {\displaystyle \beta } is a p {\displaystyle p} -form and γ {\displaystyle \gamma } is a q {\displaystyle q} -form, then
ι X ( β γ ) = ( ι X β ) γ + ( 1 ) p β ( ι X γ ) . {\displaystyle \iota _{X}(\beta \wedge \gamma )=\left(\iota _{X}\beta \right)\wedge \gamma +(-1)^{p}\beta \wedge \left(\iota _{X}\gamma \right).}
The above relation says that the interior product obeys a graded Leibniz rule. An operation satisfying linearity and a Leibniz rule is called a derivation.

Properties

If in local coordinates ( x 1 , . . . , x n ) {\displaystyle (x_{1},...,x_{n})} the vector field X {\displaystyle X} is given by

X = f 1 x 1 + + f n x n {\displaystyle X=f_{1}{\frac {\partial }{\partial x_{1}}}+\cdots +f_{n}{\frac {\partial }{\partial x_{n}}}}

then the interior product is given by

ι X ( d x 1 . . . d x n ) = r = 1 n ( 1 ) r 1 f r d x 1 . . . d x r ^ . . . d x n , {\displaystyle \iota _{X}(dx_{1}\wedge ...\wedge dx_{n})=\sum _{r=1}^{n}(-1)^{r-1}f_{r}dx_{1}\wedge ...\wedge {\widehat {dx_{r}}}\wedge ...\wedge dx_{n},}
where d x 1 . . . d x r ^ . . . d x n {\displaystyle dx_{1}\wedge ...\wedge {\widehat {dx_{r}}}\wedge ...\wedge dx_{n}} is the form obtained by omitting d x r {\displaystyle dx_{r}} from d x 1 . . . d x n {\displaystyle dx_{1}\wedge ...\wedge dx_{n}} .

By antisymmetry of forms,

ι X ι Y ω = ι Y ι X ω , {\displaystyle \iota _{X}\iota _{Y}\omega =-\iota _{Y}\iota _{X}\omega ,}
and so ι X ι X = 0. {\displaystyle \iota _{X}\circ \iota _{X}=0.} This may be compared to the exterior derivative d , {\displaystyle d,} which has the property d d = 0. {\displaystyle d\circ d=0.}

The interior product relates the exterior derivative and Lie derivative of differential forms by the Cartan formula (also known as the Cartan identity, Cartan homotopy formula[2] or Cartan magic formula):

L X ω = d ( ι X ω ) + ι X d ω = { d , ι X } ω . {\displaystyle {\mathcal {L}}_{X}\omega =d(\iota _{X}\omega )+\iota _{X}d\omega =\left\{d,\iota _{X}\right\}\omega .}

where the anticommutator was used. This identity defines a duality between the exterior and interior derivatives. Cartan's identity is important in symplectic geometry and general relativity: see moment map.[3] The Cartan homotopy formula is named after Élie Cartan.[4]

The interior product with respect to the commutator of two vector fields X , {\displaystyle X,} Y {\displaystyle Y} satisfies the identity

ι [ X , Y ] = [ L X , ι Y ] . {\displaystyle \iota _{[X,Y]}=\left[{\mathcal {L}}_{X},\iota _{Y}\right].}

See also

  • Cap product – Method in algebraic topology
  • Inner product – Generalization of the dot product; used to define Hilbert spacesPages displaying short descriptions of redirect targets
  • Tensor contraction – Operation in mathematics and physics

Notes

  1. ^ The character ⨼ is U+2A3C INTERIOR PRODUCT in Unicode
  2. ^ Tu, Sec 20.5.
  3. ^ There is another formula called "Cartan formula". See Steenrod algebra.
  4. ^ Is "Cartan's magic formula" due to Élie or Henri?, MathOverflow, 2010-09-21, retrieved 2018-06-25

References

  • Theodore Frankel, The Geometry of Physics: An Introduction; Cambridge University Press, 3rd ed. 2011
  • Loring W. Tu, An Introduction to Manifolds, 2e, Springer. 2011. doi:10.1007/978-1-4419-7400-6
  • v
  • t
  • e
Basic conceptsMain results (list)Maps
Types of
manifoldsTensors
Vectors
Covectors
Bundles
Connections
RelatedGeneralizations
  • v
  • t
  • e
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians