Frullani integral

Type of improper integral with general solution

In mathematics, Frullani integrals are a specific type of improper integral named after the Italian mathematician Giuliano Frullani. The integrals are of the form

0 f ( a x ) f ( b x ) x d x {\displaystyle \int _{0}^{\infty }{\frac {f(ax)-f(bx)}{x}}\,{\rm {d}}x}

where f {\displaystyle f} is a function defined for all non-negative real numbers that has a limit at {\displaystyle \infty } , which we denote by f ( ) {\displaystyle f(\infty )} .

The following formula for their general solution holds if f {\displaystyle f} is continuous on ( 0 , ) {\displaystyle (0,\infty )} , has finite limit at {\displaystyle \infty } , and a , b > 0 {\displaystyle a,b>0} :

0 f ( a x ) f ( b x ) x d x = ( f ( ) f ( 0 ) ) ln a b . {\displaystyle \int _{0}^{\infty }{\frac {f(ax)-f(bx)}{x}}\,{\rm {d}}x={\Big (}f(\infty )-f(0){\Big )}\ln {\frac {a}{b}}.}

Proof for continuously differentiable functions

A simple proof of the formula (under stronger assumptions than those stated above, namely f C 1 ( 0 , ) {\displaystyle f\in {\mathcal {C}}^{1}(0,\infty )} ) can be arrived at by using the Fundamental theorem of calculus to express the integrand as an integral of f ( x t ) = t ( f ( x t ) x ) {\displaystyle f'(xt)={\frac {\partial }{\partial t}}\left({\frac {f(xt)}{x}}\right)} :

f ( a x ) f ( b x ) x = [ f ( x t ) x ] t = b t = a = b a f ( x t ) d t {\displaystyle {\begin{aligned}{\frac {f(ax)-f(bx)}{x}}&=\left[{\frac {f(xt)}{x}}\right]_{t=b}^{t=a}\,\\&=\int _{b}^{a}f'(xt)\,dt\\\end{aligned}}}

and then use Tonelli’s theorem to interchange the two integrals:

0 f ( a x ) f ( b x ) x d x = 0 b a f ( x t ) d t d x = b a 0 f ( x t ) d x d t = b a [ f ( x t ) t ] x = 0 x d t = b a f ( ) f ( 0 ) t d t = ( f ( ) f ( 0 ) ) ( ln ( a ) ln ( b ) ) = ( f ( ) f ( 0 ) ) ln ( a b ) {\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {f(ax)-f(bx)}{x}}\,dx&=\int _{0}^{\infty }\int _{b}^{a}f'(xt)\,dt\,dx\\&=\int _{b}^{a}\int _{0}^{\infty }f'(xt)\,dx\,dt\\&=\int _{b}^{a}\left[{\frac {f(xt)}{t}}\right]_{x=0}^{x\to \infty }\,dt\\&=\int _{b}^{a}{\frac {f(\infty )-f(0)}{t}}\,dt\\&={\Big (}f(\infty )-f(0){\Big )}{\Big (}\ln(a)-\ln(b){\Big )}\\&={\Big (}f(\infty )-f(0){\Big )}\ln {\Big (}{\frac {a}{b}}{\Big )}\\\end{aligned}}}

Note that the integral in the second line above has been taken over the interval [ b , a ] {\displaystyle [b,a]} , not [ a , b ] {\displaystyle [a,b]} .

Applications

The formula can be used to derive an integral representation for the natural logarithm ln ( x ) {\displaystyle \ln(x)} by letting f ( x ) = e x {\displaystyle f(x)=e^{-x}} and a = 1 {\displaystyle a=1} :

0 e x e b x x d x = ( lim n 1 e n e 0 ) ln ( 1 b ) = ln ( b ) {\displaystyle {\int _{0}^{\infty }{\frac {e^{-x}-e^{-bx}}{x}}\,{\rm {d}}x={\Big (}\lim _{n\to \infty }{\frac {1}{e^{n}}}-e^{0}{\Big )}\ln {\Big (}{\frac {1}{b}}}{\Big )}=\ln(b)}

The formula can also be generalized in several different ways.[1]

References

  • G. Boros, Victor Hugo Moll, Irresistible Integrals (2004), pp. 98
  • Juan Arias-de-Reyna, On the Theorem of Frullani (PDF; 884 kB), Proc. A.M.S. 109 (1990), 165-175.
  • ProofWiki, proof of Frullani's integral.
  1. ^ Bravo, Sergio; Gonzalez, Ivan; Kohl, Karen; Moll, Victor Hugo (21 January 2017). "Integrals of Frullani type and the method of brackets". Open Mathematics. 15 (1). doi:10.1515/math-2017-0001. Retrieved 17 June 2020.