Expander mixing lemma

The expander mixing lemma intuitively states that the edges of certain d {\displaystyle d} -regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets S {\displaystyle S} and T {\displaystyle T} is always close to the expected number of edges between them in a random d {\displaystyle d} -regular graph, namely d n | S | | T | {\displaystyle {\frac {d}{n}}|S||T|} .

d-Regular Expander Graphs

Define an ( n , d , λ ) {\displaystyle (n,d,\lambda )} -graph to be a d {\displaystyle d} -regular graph G {\displaystyle G} on n {\displaystyle n} vertices such that all of the eigenvalues of its adjacency matrix A G {\displaystyle A_{G}} except one have absolute value at most λ . {\displaystyle \lambda .} The d {\displaystyle d} -regularity of the graph guarantees that its largest absolute value of an eigenvalue is d . {\displaystyle d.} In fact, the all-1's vector 1 {\displaystyle \mathbf {1} } is an eigenvector of A G {\displaystyle A_{G}} with eigenvalue d {\displaystyle d} , and the eigenvalues of the adjacency matrix will never exceed the maximum degree of G {\displaystyle G} in absolute value.

If we fix d {\displaystyle d} and λ {\displaystyle \lambda } then ( n , d , λ ) {\displaystyle (n,d,\lambda )} -graphs form a family of expander graphs with a constant spectral gap.

Statement

Let G = ( V , E ) {\displaystyle G=(V,E)} be an ( n , d , λ ) {\displaystyle (n,d,\lambda )} -graph. For any two subsets S , T V {\displaystyle S,T\subseteq V} , let e ( S , T ) = | { ( x , y ) S × T : x y E ( G ) } | {\displaystyle e(S,T)=|\{(x,y)\in S\times T:xy\in E(G)\}|} be the number of edges between S and T (counting edges contained in the intersection of S and T twice). Then

| e ( S , T ) d | S | | T | n | λ | S | | T | . {\displaystyle \left|e(S,T)-{\frac {d|S||T|}{n}}\right|\leq \lambda {\sqrt {|S||T|}}\,.}

Tighter Bound

We can in fact show that

| e ( S , T ) d | S | | T | n | λ | S | | T | ( 1 | S | / n ) ( 1 | T | / n ) {\displaystyle \left|e(S,T)-{\frac {d|S||T|}{n}}\right|\leq \lambda {\sqrt {|S||T|(1-|S|/n)(1-|T|/n)}}\,}

using similar techniques.[1]

Biregular Graphs

For biregular graphs, we have the following variation, where we take λ {\displaystyle \lambda } to be the second largest eigenvalue.[2]

Let G = ( L , R , E ) {\displaystyle G=(L,R,E)} be a bipartite graph such that every vertex in L {\displaystyle L} is adjacent to d L {\displaystyle d_{L}} vertices of R {\displaystyle R} and every vertex in R {\displaystyle R} is adjacent to d R {\displaystyle d_{R}} vertices of L {\displaystyle L} . Let S L , T R {\displaystyle S\subseteq L,T\subseteq R} with | S | = α | L | {\displaystyle |S|=\alpha |L|} and | T | = β | R | {\displaystyle |T|=\beta |R|} . Let e ( G ) = | E ( G ) | {\displaystyle e(G)=|E(G)|} . Then

| e ( S , T ) e ( G ) α β | λ d L d R α β ( 1 α ) ( 1 β ) λ d L d R α β . {\displaystyle \left|{\frac {e(S,T)}{e(G)}}-\alpha \beta \right|\leq {\frac {\lambda }{\sqrt {d_{L}d_{R}}}}{\sqrt {\alpha \beta (1-\alpha )(1-\beta )}}\leq {\frac {\lambda }{\sqrt {d_{L}d_{R}}}}{\sqrt {\alpha \beta }}\,.}

Note that d L d R {\displaystyle {\sqrt {d_{L}d_{R}}}} is the largest eigenvalue of G {\displaystyle G} .

Proofs

Proof of First Statement

Let A G {\displaystyle A_{G}} be the adjacency matrix of G {\displaystyle G} and let λ 1 λ n {\displaystyle \lambda _{1}\geq \cdots \geq \lambda _{n}} be the eigenvalues of A G {\displaystyle A_{G}} (these eigenvalues are real because A G {\displaystyle A_{G}} is symmetric). We know that λ 1 = d {\displaystyle \lambda _{1}=d} with corresponding eigenvector v 1 = 1 n 1 {\displaystyle v_{1}={\frac {1}{\sqrt {n}}}\mathbf {1} } , the normalization of the all-1's vector. Define λ = max { λ 2 2 , , λ n 2 } {\displaystyle \lambda ={\sqrt {\max\{\lambda _{2}^{2},\dots ,\lambda _{n}^{2}\}}}} and note that max { λ 2 2 , , λ n 2 } λ 2 λ 1 2 = d 2 {\displaystyle \max\{\lambda _{2}^{2},\dots ,\lambda _{n}^{2}\}\leq \lambda ^{2}\leq \lambda _{1}^{2}=d^{2}} . Because A G {\displaystyle A_{G}} is symmetric, we can pick eigenvectors v 2 , , v n {\displaystyle v_{2},\ldots ,v_{n}} of A G {\displaystyle A_{G}} corresponding to eigenvalues λ 2 , , λ n {\displaystyle \lambda _{2},\ldots ,\lambda _{n}} so that { v 1 , , v n } {\displaystyle \{v_{1},\ldots ,v_{n}\}} forms an orthonormal basis of R n {\displaystyle \mathbf {R} ^{n}} .

Let J {\displaystyle J} be the n × n {\displaystyle n\times n} matrix of all 1's. Note that v 1 {\displaystyle v_{1}} is an eigenvector of J {\displaystyle J} with eigenvalue n {\displaystyle n} and each other v i {\displaystyle v_{i}} , being perpendicular to v 1 = 1 {\displaystyle v_{1}=\mathbf {1} } , is an eigenvector of J {\displaystyle J} with eigenvalue 0. For a vertex subset U V {\displaystyle U\subseteq V} , let 1 U {\displaystyle 1_{U}} be the column vector with v th {\displaystyle v^{\text{th}}} coordinate equal to 1 if v U {\displaystyle v\in U} and 0 otherwise. Then,

| e ( S , T ) d n | S | | T | | = | 1 S T ( A G d n J ) 1 T | {\displaystyle \left|e(S,T)-{\frac {d}{n}}|S||T|\right|=\left|1_{S}^{\operatorname {T} }\left(A_{G}-{\frac {d}{n}}J\right)1_{T}\right|} .

Let M = A G d n J {\displaystyle M=A_{G}-{\frac {d}{n}}J} . Because A G {\displaystyle A_{G}} and J {\displaystyle J} share eigenvectors, the eigenvalues of M {\displaystyle M} are 0 , λ 2 , , λ n {\displaystyle 0,\lambda _{2},\ldots ,\lambda _{n}} . By the Cauchy-Schwarz inequality, we have that | 1 S T M 1 T | = | 1 S M 1 T | 1 S M 1 T {\displaystyle |1_{S}^{\operatorname {T} }M1_{T}|=|1_{S}\cdot M1_{T}|\leq \|1_{S}\|\|M1_{T}\|} . Furthermore, because M {\displaystyle M} is self-adjoint, we can write

M 1 T 2 = M 1 T , M 1 T = 1 T , M 2 1 T = 1 T , i = 1 n M 2 1 T , v i v i = i = 2 n λ i 2 1 T , v i 2 λ 2 1 T 2 {\displaystyle \|M1_{T}\|^{2}=\langle M1_{T},M1_{T}\rangle =\langle 1_{T},M^{2}1_{T}\rangle =\left\langle 1_{T},\sum _{i=1}^{n}M^{2}\langle 1_{T},v_{i}\rangle v_{i}\right\rangle =\sum _{i=2}^{n}\lambda _{i}^{2}\langle 1_{T},v_{i}\rangle ^{2}\leq \lambda ^{2}\|1_{T}\|^{2}} .

This implies that M 1 T λ 1 T {\displaystyle \|M1_{T}\|\leq \lambda \|1_{T}\|} and | e ( S , T ) d n | S | | T | | λ 1 S 1 T = λ | S | | T | {\displaystyle \left|e(S,T)-{\frac {d}{n}}|S||T|\right|\leq \lambda \|1_{S}\|\|1_{T}\|=\lambda {\sqrt {|S||T|}}} .

Proof Sketch of Tighter Bound

To show the tighter bound above, we instead consider the vectors 1 S | S | n 1 {\displaystyle 1_{S}-{\frac {|S|}{n}}\mathbf {1} } and 1 T | T | n 1 {\displaystyle 1_{T}-{\frac {|T|}{n}}\mathbf {1} } , which are both perpendicular to v 1 {\displaystyle v_{1}} . We can expand

1 S T A G 1 T = ( | S | n 1 ) T A G ( | T | n 1 ) + ( 1 S | S | n 1 ) T A G ( 1 T | T | n 1 ) {\displaystyle 1_{S}^{\operatorname {T} }A_{G}1_{T}=\left({\frac {|S|}{n}}\mathbf {1} \right)^{\operatorname {T} }A_{G}\left({\frac {|T|}{n}}\mathbf {1} \right)+\left(1_{S}-{\frac {|S|}{n}}\mathbf {1} \right)^{\operatorname {T} }A_{G}\left(1_{T}-{\frac {|T|}{n}}\mathbf {1} \right)}

because the other two terms of the expansion are zero. The first term is equal to | S | | T | n 2 1 T A G 1 = d n | S | | T | {\displaystyle {\frac {|S||T|}{n^{2}}}\mathbf {1} ^{\operatorname {T} }A_{G}\mathbf {1} ={\frac {d}{n}}|S||T|} , so we find that

| e ( S , T ) d n | S | | T | | | ( 1 S | S | n 1 ) T A G ( 1 T | T | n 1 ) | {\displaystyle \left|e(S,T)-{\frac {d}{n}}|S||T|\right|\leq \left|\left(1_{S}-{\frac {|S|}{n}}\mathbf {1} \right)^{\operatorname {T} }A_{G}\left(1_{T}-{\frac {|T|}{n}}\mathbf {1} \right)\right|}

We can bound the right hand side by λ 1 S | S | | n | 1 1 T | T | | n | 1 = λ | S | | T | ( 1 | S | n ) ( 1 | T | n ) {\displaystyle \lambda \left\|1_{S}-{\frac {|S|}{|n|}}\mathbf {1} \right\|\left\|1_{T}-{\frac {|T|}{|n|}}\mathbf {1} \right\|=\lambda {\sqrt {|S||T|\left(1-{\frac {|S|}{n}}\right)\left(1-{\frac {|T|}{n}}\right)}}} using the same methods as in the earlier proof.

Applications

The expander mixing lemma can be used to upper bound the size of an independent set within a graph. In particular, the size of an independent set in an ( n , d , λ ) {\displaystyle (n,d,\lambda )} -graph is at most λ n / d . {\displaystyle \lambda n/d.} This is proved by letting T = S {\displaystyle T=S} in the statement above and using the fact that e ( S , S ) = 0. {\displaystyle e(S,S)=0.}

An additional consequence is that, if G {\displaystyle G} is an ( n , d , λ ) {\displaystyle (n,d,\lambda )} -graph, then its chromatic number χ ( G ) {\displaystyle \chi (G)} is at least d / λ . {\displaystyle d/\lambda .} This is because, in a valid graph coloring, the set of vertices of a given color is an independent set. By the above fact, each independent set has size at most λ n / d , {\displaystyle \lambda n/d,} so at least d / λ {\displaystyle d/\lambda } such sets are needed to cover all of the vertices.

A second application of the expander mixing lemma is to provide an upper bound on the maximum possible size of an independent set within a polarity graph. Given a finite projective plane π {\displaystyle \pi } with a polarity , {\displaystyle \perp ,} the polarity graph is a graph where the vertices are the points a of π {\displaystyle \pi } , and vertices x {\displaystyle x} and y {\displaystyle y} are connected if and only if x y . {\displaystyle x\in y^{\perp }.} In particular, if π {\displaystyle \pi } has order q , {\displaystyle q,} then the expander mixing lemma can show that an independent set in the polarity graph can have size at most q 3 / 2 q + 2 q 1 / 2 1 , {\displaystyle q^{3/2}-q+2q^{1/2}-1,} a bound proved by Hobart and Williford.

Converse

Bilu and Linial showed[3] that a converse holds as well: if a d {\displaystyle d} -regular graph G = ( V , E ) {\displaystyle G=(V,E)} satisfies that for any two subsets S , T V {\displaystyle S,T\subseteq V} with S T = {\displaystyle S\cap T=\emptyset } we have

| e ( S , T ) d | S | | T | n | λ | S | | T | , {\displaystyle \left|e(S,T)-{\frac {d|S||T|}{n}}\right|\leq \lambda {\sqrt {|S||T|}},}

then its second-largest (in absolute value) eigenvalue is bounded by O ( λ ( 1 + log ( d / λ ) ) ) {\displaystyle O(\lambda (1+\log(d/\lambda )))} .

Generalization to hypergraphs

Friedman and Widgerson proved the following generalization of the mixing lemma to hypergraphs.

Let H {\displaystyle H} be a k {\displaystyle k} -uniform hypergraph, i.e. a hypergraph in which every "edge" is a tuple of k {\displaystyle k} vertices. For any choice of subsets V 1 , . . . , V k {\displaystyle V_{1},...,V_{k}} of vertices,

| | e ( V 1 , . . . , V k ) | k ! | E ( H ) | n k | V 1 | . . . | V k | | λ 2 ( H ) | V 1 | . . . | V k | . {\displaystyle \left||e(V_{1},...,V_{k})|-{\frac {k!|E(H)|}{n^{k}}}|V_{1}|...|V_{k}|\right|\leq \lambda _{2}(H){\sqrt {|V_{1}|...|V_{k}|}}.}

Notes

  1. ^ Vadhan, Salil (Spring 2009). "Expander Graphs" (PDF). Harvard University. Retrieved December 1, 2019.
  2. ^ See Theorem 5.1 in "Interlacing Eigenvalues and Graphs" by Haemers
  3. ^ Expander mixing lemma converse

References

  • Alon, N.; Chung, F. R. K. (1988), "Explicit construction of linear sized tolerant networks", Discrete Mathematics, 72 (1–3): 15–19, CiteSeerX 10.1.1.300.7495, doi:10.1016/0012-365X(88)90189-6.
  • F.C. Bussemaker, D.M. Cvetković, J.J. Seidel. Graphs related to exceptional root systems, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), volume 18 of Colloq. Math. Soc. János Bolyai (1978), 185-191.
  • Haemers, W. H. (1979). Eigenvalue Techniques in Design and Graph Theory (PDF) (Ph.D.).
  • Haemers, W. H. (1995), "Interlacing Eigenvalues and Graphs", Linear Algebra Appl., 226: 593–616, doi:10.1016/0024-3795(95)00199-2.
  • Hoory, S.; Linial, N.; Wigderson, A. (2006), "Expander Graphs and their Applications" (PDF), Bull. Amer. Math. Soc. (N.S.), 43 (4): 439–561, doi:10.1090/S0273-0979-06-01126-8.
  • Friedman, J.; Widgerson, A. (1995), "On the second eigenvalue of hypergraphs" (PDF), Combinatorica, 15 (1): 43–65, doi:10.1007/BF01294459, S2CID 17896683.